翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

precision engineering : ウィキペディア英語版
precision engineering

Precision engineering is a subdiscipline of electrical engineering, software engineering, electronics engineering, mechanical engineering, and optical engineering concerned with designing machines, fixtures, and other structures that have exceptionally low tolerances, are repeatable, and are stable over time. These approaches have applications in machine tools, MEMS, NEMS, optoelectronics design, and many other fields.
== Overview ==
One of the fundamental principles in precision engineering is that of determinism. System behavior is fully predictable even to nanometer-scale motions.
"The basic idea is that machine tools obey cause and effect relationships that are within our ability to understand and control and that there is nothing random or probabilistic about their behavior. Everything happens for a reason and the list of reasons is small enough to manage." - Jim Bryan
"By this we mean that machine tool errors obey cause-and-effect relationships, and do not vary randomly for no reason. Further, the causes are not esoteric and uncontrollable, but can be explained in terms of familiar engineering principles." - Bob Donaldson
Professors Hiromu Nakazawa and Pat McKeown provide the following list of goals for precision engineering:
# Create a highly precise movement.
# Reduce the dispersion of the product's or part's function.
# Eliminate fitting and promote assembly, especially automatic assembly.
# Reduce the initial cost.
# Reduce the running cost.
# Extend the life span.
# Enable the design safety factor to be lowered.
# Improve interchangeability of components so that corresponding parts made by other factories or firms can be used in their place.
# Improve quality control through higher machine accuracy capabilities and hence reduce scrap, rework, and conventional inspection.
# Achieve a greater wear/fatigue life of components.
# Make functions independent of one another.
# Achieve greater miniaturization and packing densities.
# Achieve further advances in technology and the underlying sciences."〔Venkatesh, V. C. and Izman, Sudin, ''Precision Engineering'', Tata McGraw-Hill Publishing Company Limited, 2007, page 6.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「precision engineering」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.